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ESTIMATES OF THE PARAMETERS OF INCREASING PERTURBATIONS IN SHEAR FLOWS 
OFAN INHOMOGENEOUS MAGNETIZEB PLASMA* 

N.A. G~ZUNOVA and YU.A. STEPANYANTS 

The method of integral relations is used to obtain estimates of the 
phase velocity and perturbation growth increment in the shear flow of a 
magnetized plasma, analogous to existing estimates ./I, 21 in the 
hydrodynamics of stratified fluid,and to refine the results obtained in 
/3/. 

1. We shall start with a well-known system of equations of magn~tobydrodynamics for an 
ideal incompressible fluid of variable density in a gravitational force field /4/: 

Here p and p, are the pressure and density perturbations, P (2) 
density distribution along the vertical, 

is the unperturbed 
and the remaining notation is traditional. 

Let the fluid be contained between two horizontal solid boundaries z= 0 and Z= H. The 
components of the flow velocity vector and magnetic field strength have, in the unperturbed 
state, the form (V (2). 0, 01, (& (z), 0, Of. We shall assume that the perturbations of these fields 
are two-dimensional: 7 = 1% 0, W), 6 = tbx, 0, Q. Linearizing the initial system of equations and 
seeking the solutions in the form of a product obtained by multiplying the corresponding 
structural functions depending on z by sxp {rk(z-- ct)), we reduce the system (1.1) to a single 
equation for the auxiliary function I(z) = F (e)lU(z)- cl"ip' (a prime denotes a derivative 
with respect to z), where F (2) is a function defining the structure of the density per- 
turbation along the vertical. Ne multiply the equation obtained in this manner by a complex 

conjugate function f(z), and integrate the result in s from 8 to H. As a result we arrive 
at the following integral relation (from now on the limits of integration will be ommitted 
for siaplicityl: 

(f.2) 
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Here n is an arbitrary number, No= -gp'/p is the square of the frequency of buoyancy, 
v_&= = B,'/(4W) is the square of the Al'fen velocity and c is the phase velocity of the per- 
turbations, which represents for the given real value of the wave number k, a complex spectral 
parameter of the boundary-value problem for the equation mentioned above, with the boundary 
conditions j(O)=f(H)= 0. 

Eq.Cl.2) represents, essentially, a set of independent integral relations for various 
values of the parameter n. Everyone of these relations can be used to derive some estimate 
for the spectral parameter C. In the usual hydrodynamics of a stratified liquid, the passage 
to which takes place naturally when Bo, VAa-O, various estimates for C were successfully 
obtained fox the cases R = 0,3/e, 1 /1,2,5--9/. In magnetohydrodynamics the situation is more 
complicated, and only the case n= 0 has been investigated. 

2. Let us consider the case of lb= 0. We shall assume that the basic flow is unstable, 
so that the phase velocity of the perturbations is complex C= c,$@, while ci>O. The 
imaginary part of the integral Eq.tl.2) has the following form at n= 0: 

j P (U - CT) Qaz = 0, Q = Ii’ I2 + ka I f la 
Let us write the real part of the corresponding integral relation in the form 

5 PEFQde = I, + 1, + /c I”[ 

Let the velocity profile be bounded and contained within the interval V&HI, within 
the range &In< rr@)<Um,. We shall use the inequality 

O>jp(U- Urnin) (U- u,,,) Qdz= I,+ G+ x1> (2.f) 

(Xt q&JI$_fs 

If we reject from this inequality the integral I I which is already known to be positive 
(under the assumption that the stratification is statically stable, i.e. N'(z)>O), then the 
inequality will only become stronger. In this case the inequality will yield the result of 
/lo/, i.e. the "semicircle " theorem which states that the complex phase velocity of increasing 
perturbations is contained within a semicirle in the complex plane with centre at the point 

(U+, 0) of radius It== v' U?- VBArnrn (the semicircle is shown in the figure by a dahsed line). 

However, dropping the integral I, containing N" means, actually, that the stratification is 
neglected (the liquid is of uniform density). Kochar and Jain /3/ were successful in taking 
into account the influence of this integral by expressing it in terms of the integral 1, but 
the process involved the use of fairly rough estimates, and this led to a final result which 
did not include the dependence of the range of possible values of c on the wave number k. 
Below we give more accurate estimates analogous to those used in /I, 21. 

3. We shall use the auxiliary integral relations for the function G=jdv The 
relation is obtained after carrying out simple but bulky transformations analogous to those 
used in deriving relations (1.2). The imaginary part of the new integral relation yields 
(N"IL"* zs J (z) is Richardson's number): 

f P (2 + VA% / CT - E I-? (I G’ Ia + k* 1 G Is) dz - (3.2) 

f P if'/4 - J) u's - (U - c,)]U - c I"lVAVY + 

Dropping from (3.1) the term known to be positive and containing the cofactors VJ[ u- 
c I-‘, and estimating the lower limit of the remaining integrals, we obtain the inequality 

‘M'>L)": A = Ia-- r,,, + (pa + V*)/cza 8.21 

84 = 5 pu'" 1 II - c 1-1 \ G 1 ‘dz, Da = 5 p (I G’ I* + 

kP 1 G I’) ds 

pa = a;, P AlltaX + max 1 VAX (et - CL) U” / U’P I 

9 = max. 1 (PVA9’(C, - (I) / (PU’) I 

Using the inequality 

1 G’ f’ > 1 u - c 1 1 f’ p + ‘lo u’* 1 f p / I u - c I - I U’./ If’ t I f I 
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and the Cauchy-Bunyakovskii-Schwartz inequality to obtain the estimate of the integral 

jpU'1f'IIfIdrd-W AP=jpIU-clIf'lad~ 

we obtain the following estimate for the right-hand side of (3.2): 

D* > A* + I/, E* + k’C= - AB, C’ = j p 1 V - c 1 1 f Iadz (3.3) 

An inequality analogous to (3.3) was obtained in /3, 61, but the terms Aa and k’O were 

combined in it to form a single term. This led to the fact that after carrying out the sub- 

sequent estimates the result because independent of the wave number k, i.e. a rough estimate 
was obtained, uniform in k. However, as was shown in /l, 7/, everyone of the integrals A, 

B, C could be estimated separately, and this is what we have done below. 
Combining the inequalities (3.2) and (3.3), we write 

(A I B - ‘# < A - k’C= / B” (3.4) 

The definitions of B and C yield the estimate CalB*> y*JV&,, for the ratio C=IB= . 

Taking this into account, we can write the inequality (3.4) in the form 

A’ + k’C’ < MB’, M = ‘14 + ,\ + 1/ A - k4i211J~,, (3.51 

On the other hand, the definitions of the integrals A, B, C yield 

A' f k*C’ > CiI, B” ( Id~i, I, = \ PV” 1 f I’d2 

Substituting these estimates into the inequality (3.5) we obtain I,>cNM. Moreover, 
we have 1, > I,&,. Using the last two inequalities, we finally obtain from (2.1): 

(c, - U+Y + ci'(i + J,.&.W < R’ (3.6) 
The latter inequality determines, in the complex c-plane, the domain of possible values 

of the phase velocity, and the form of the boundary curve depends here explicitly on the 
minimum value of Richardson's number J,,,,“, as well as on the wave number k of the perturbation. 

Putting p=v=o, in (3.6) we obtain, for infinitely 
long perturbations (k-O), the result of /3/. The bound- 
ary curve becomes in this case a semi-ellipse whose semi-- 
minor axis in the direction of c, depends explicitly on 

(the dot-dash curve in the figure). In the limit, 

_f 1 \ as I,,,,-@, the semi-ellipse becomes a semicircle /lo/. 

It can be shown that in the general case k#O,Jmln#O 

u+ R 
the curve serving as the boundary of the region (3.6) will 
always lie within the semicircle /lo/ and also within the 
semi-ellipse /3/ (the solid line in the figure). When 

there is no external magnetic field, when VA*=O, we obtain from (3.6) the already known 
result for the usual hydrodynamics of a stratified fluid /1, 71. 

We shall mention another inequality which follows from (3.6), representing the require- 
ment that the radicand in the definition of M (see (3.5)) should be non-negative: 

The product kq represents the increment in the growth of perturbations, therefore the 
upper limit of inequality (3.7) can be estimated. 

Finally we note that when the magnetic field strength increases (i.e. when V,,, in- 

creases), we see from the inequality (3.6) that the size of the region containing the complex 
quantity c decreases. When the field strength B 0, is sufficiently large and such that Vfimn> 

u-‘, the right-hand side of inequality (3.6) becomes negative and the inequality itself 
loses its meaning. This corresponds to the absence of instability in the shear flow, since 
we have, within the framework of ideal magnetohydrodynamics without dissipation discussed 
here, the "freezing in" of the lines of force /4/, which represses the oscillations across 
the external magnetic field. In this sense, the magnetic field exerts a stabilizing influence 
on the shear flow, analogous to the surface tension between two mutually immiscible liquids. 
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